

Bioaerosols comprise pathogenic and non-pathogenic, living (mostly infectious?) and dead (mostly climate relevant?) **material such as:**

- viruses •
- bacteria
- fungi, oomycetes
- algae
- cyanobacteria
- archaea
- lichens
- bryophytes
- vascular plants
- nollan and enorge

Bioaerosols

Proteins Viruses Bacteria Spores Poller

FÜR CHEMIE

Gutenberg Lehrkolleg

MAX-PLANCK-GESELLSCHAFT

2. Relevance of bioaerosol sampling

We inhale 10 m³ of air per day and in each m³ air are approx. **1000 cultivable microorganisms**.

Bioaerosols have influence on:

- health (especially respiratory tract and skin)
- agriculture and forestry
- precipitation: cloud condensation nuclei or ice nuclei \rightarrow interaction with radiation \rightarrow effect on climate

Sampling is influenced by:

- > particle aerodynamic diameter
- wind velocity
- ➤ direction
- inlet characteristic
- *sampling time*
- mechanical stress
- daniaantian

 ponent and spores cell fractions, DNA, proteins, debris, excrements 	100 pm 1 nm 10 nm 10 	$-\frac{1}{10}$ $-\frac{1}{10}$ $-\frac{1}{10}$ $-\frac{100}{10}$ μm 1 mm $-\frac{1}{10}$ $-\frac{1}$	Diameter (m) 1.E-02 1.E-01 1 cm 10 cm Keep in r • variou • often p • What is	nind: s sampling techniques diff pre-separator/pre filter are is the available budget for	fer in detended necessary the samp	ectable particle size range y oling?
3. Methods Pro			Technique			Contra
 economically feasible direct collection of microor 	organisms	 Implementation air is forced to change dependent of the surface, smaller part collection on different key slide, agar plate, filter, get 	paction lirection \rightarrow larger particles hit ticles follow the airstream tinds of substrate (e. g. glass gelatine)	Air streamlines		 quantification: culture based overloading of culture plate- colonies bounce off particles → trans impaction stage

- liquid collection medium: reduction of overloading and desiccation stress of microorganism
- economically feasible
- potential for size fractionation
- portable
- impactor types: virtual, slit and cascade

Impingement

- airstream is led into a liquid collection medium \rightarrow microorganisms are collected by immersion

- \rightarrow overlap of
- sport in the next
- effect of wind speed
- desiccation \rightarrow low recovery efficiency
- quantification: post collection processes
- evaporation of liquid medium \rightarrow miscalculation of quantification
- not compatible with size fractionation
- no size fractionation
- quantification: post collection processes
- overloading of culture plate \rightarrow overlap of colonies
- desiccation \rightarrow low recovery efficiency
- effect of wind speed

Filtration

- airstream is forced to go through different filters types of different materials (e. g. cellulose, glass, quartz, plastic)
- filter types: fiber (A), membrane (B), porous foam (C),
- good collection efficiency \rightarrow reduced particle bounce
- low pressure drop (higher flow rates)
- good recovery efficiency \rightarrow reduced stress on microorganisms
- quantification possible
- no vacuum pump needed
- good collection efficiency for smaller particles
- determination of particle size distribution
- air flows freely through the sampler \rightarrow small pressure drop
- ultrafine bioaerosol particles can also be sampled and detected easily
- very low detection limit
- economically feasible
- no vacuum pump needed

capillary pore (D)

Cyclone swirling air and centrifugal force is used to capture microorganisms into a liquid

Electrostatic precipitation particles are charged at the inlet an exposed to an electrical field inside the sampler

 \rightarrow particle migration over charged plate

Thermal precipitation

hot and cold surface \rightarrow along a temperature gradient particles move to the cooler surface and will be collected (thermophoretic motion)

Condensation technique airstream is forced to go through a saturator \rightarrow evaporated liquid condenses on particles \rightarrow spectroscopical detection

Gravity agar plate/SEM plate \rightarrow microorganisms from air settle on a plate

- evaporation of liquid medium \rightarrow miscalculation of quantification
- viability of bacteria is effected by electric charge
- few study on this technique \rightarrow less data for comparison
- low collection rate
- small collection area
- high temperature \rightarrow effect on viability of the microorganisms

- complex system \rightarrow expertise required
- high temperature \rightarrow effect on viability of the microorganisms
- not accepted by official guidelines
- relies on air currents
- weakly correlated with counts of quantitative methods (primary larger particle settle down, smaller stay in air longer)

4. Artefacts

Definition: Physical, physicochemical and chemical changes / sources of errors, which cause a

change of composition.

Positive artefacts: Filter material with a high surface activity can adsorb gas phase components (especially quartz fiber filters!).

Negative artefacts: Evaporation of aerosol particles due to pressure and temperature changes. **Chemical artefacts:** Changes in composition through reactions, e.g. with oxidants.

5. Conclusion

Offline sampling: collection of aerosols \rightarrow opportunity for cultivation and identification and often also for quantification

Online sampling: direct detection of number and size of particles.

THE sampling method suitable for collection of different types of bioaerosol **does not exist!**

It depends on the individual research question which sampling methods will be the best.

In most cases: Combination of different (bio)aerosol detectors/collectors.

References:

Ghosh, Lal, and Srivastava 2015, Review of bioaerosols in indoor environment with special reference tosampling, analysis and control mechanisms, Environment International 85, pp. 254–272

Haig, Mackay, Walker, Williams, 2016, Bioaerosol sampling: sampling mechanisms, bioefficiency and field studies, Journal of Hospital Infection 93, pp. 242 - 255

Pictures of box 1: http://www.secondwindairpurifier.com/usercontent/images/BIOAEROSOLS%20COLLAGE.jpg Pictures of box 3: http://www.merckmillipore.com/ http://www.bbc.co.uk/staticarchive/29aad063f307bfada03bbf212d584b846eb620a9.gif http://aerosol.ees.ufl.edu/Thermophoresis/section03.html; http://images.slideplayer.com/18/5697374/slides/slide_68.jpg